
Copyright © 2024 Tismo Technology Solutions (P) Ltd

The JavaScript Oxymoron

Kishan Chandrashekhar

Tismo Technology Solutions (P) Ltd.

29 January 2024

ABSTRACT

This article intends to demystify the commonly misunderstood concept
of constants in JavaScript. Many leading names in the industry have
pondered, published blogs, and even went on to hold multiple seminars
and conference talks about the grammatical inaccuracy of various
terminologies in programming. A well known example of this very topic
is the seemingly “known to all, understood by none” usage of the phrase
“constant variable”. In simple terms, the phrase is an oxymoron. And like
certain terminologies in programming, oxymorons are generally
misunderstood too. Only in appreciating their literary significance and
structural beauty, can one begin to understand the simplicity and
triviality of “constant variable”.

OXYMORONS IN ENGLISH

Oxymoron is a figure of speech where seemingly opposite terms show
up next to each other. It is derived from two Greek words: oxys meaning
‘sharp’ and moronos meaning ‘dull’. As expected, the word itself is an
oxymoron.

Copyright © 2024 Tismo Technology Solutions (P) Ltd

OXYMORONS IN JAVASCRIPT

The const keyword in JavaScript is used to declare a constant. Constants
are often thought of as variables that cannot change:

The constant variable ‘hello’ is immutable. Despite described as a
variable, it cannot be changed.
But on the other hand, consider the example below:

Turns out, creating an object using const does not necessarily mean it’s a
constant. To better understand this behaviour, one must first learn the

> const hello = 3;
> hello = 6; // Uncaught TypeError: Assignment to constant variable.

> console.log(hello); // -> 3

> const person = {
 name: 'Andy'
 };
> person.name = 'Murray';

> console.log(person); // -> { name: 'Murray' }

Copyright © 2024 Tismo Technology Solutions (P) Ltd

difference between assignment and mutation. The better understanding
one has of these two key terms, the more sense JavaScript will make.

SIGNIFICANCE OF LABELS

The following two examples are perfectly valid JavaScript programs:

In both the examples above, a number and an array are displayed. These
are created and stored in memory when the code runs. Now once they
are in memory, how are they accessed?
It is understood that the number and the array are stored somewhere in
memory, but they are not of any use as they cannot be accessed. This is
where labels come in handy. Variables allow the option to stick a label
on the things that have been created, so that they can referenced at the
time of need.

Since the general majority grew up learning English or other
‘sinistrodextral‘ languages, which are languages that read from left to
right, it is then naturally assumed that code too gets executed from left
to right.
So, the assumption one makes is that the `pets` variable is first created,
like an empty slot, and then the array is assembled within that slot. This
of course, is not the right mental representation. It is more accurate to
say that the array gets created first, then the `pets` label is pointed at it.
Please note that the term “variable” can be a little bit confusing.
Unfortunately, it is the established umbrella term in JavaScript to
reference both `let` and `const`. Going forward, ‘variable’ will refer to
any label attached to data.

// Program 1
> 5;

 // Program 2
> ['cats', 'dogs', 'spiders'];

// Create it now
> const pets = ['cats', 'dogs', 'spiders'];

 // Reference it later
> console.log(pets); // -> ['cats', 'dogs', 'spiders'];

Copyright © 2024 Tismo Technology Solutions (P) Ltd

LABEL REASSIGNMENT

When one uses the `let` keyword to create a variable, they are able to
change which “thing” that label refers to.
For instance, `pets` label can be pointed at a new value:

As shown in the above image, `pets` can be pointed to [‘lions’, ‘sharks’,
‘dinosaurs’] or [‘ambulance’] or 27 or null without throwing any errors.

This is known as re-assignment. It showcases that actually, the `pets`
label should refer to an entirely different value. By doing so, the data is
not modified, but the label is. The label gets detached from the original
array and gets connected to a new one.
On the contrary, variables created with `const` cannot be reassigned.

> let pets = ['dogs', 'cats', 'spiders'];

Copyright © 2024 Tismo Technology Solutions (P) Ltd

That is the fundamental difference between `let` and `const`. When in
need of an indestructible link between a variable name and a piece of
data, use `const`.
Modification of the data itself is allowed, as long as the label remains
intact. As shown below, addition or removal of items from an array can
be performed without issues. The `fruits` variable is still connected to
the same array:

Via code, the following is valid:

// Points to the 'fruits' label at this array:
> const fruits = ['apple'];

Copyright © 2024 Tismo Technology Solutions (P) Ltd

This is known as mutation. The value of the array is edited by adding /
removing items.
Let’s look at another convincing example.

DOG SHOW OR TEA PARTY?

In the below example, an event slot has been booked, but it’s not
confirmed yet as to what the event is. So technically, one can keep any
event in the slot and still have the slot be valid for the specified duration.

And this is the JS equivalent of what is happening above:

// Points to the 'fruits' label at this array:
> const fruits = ['apple'];

 // Modify the array:
> fruits.push('banana');
> fruits.push('cherry');
> fruits.push('cement'); // Not meaningful, but valid!

Copyright © 2024 Tismo Technology Solutions (P) Ltd

In layman terms, Re-assignment means pointing a variable name at a
new thing while Mutation means editing the data within the thing. So,
when a variable is created with `const`, the variable will never be re-
assigned, but the same is not true when it comes to mutation. `const` is
simply not designed to block mutation.

FROZEN IN TIME

There is a way to prevent mutations in JavaScript. Object.freeze() can be
used to make the variable immutable.

> const event = {
 eventName: 'Change event',
 startsAt: '2023-12-29T16:00:00Z',
 duration: 4,
 ticketPrice: '$1500'
 };

> event.eventName = 'Tea Party';
> event.duration = 6;

// With arrays:
> const arr = Object.freeze([10, 20, 30]);

> arr.push(40);
> console.log(arr); // -> [10, 20, 30];

// With objects:
> const person = Object.freeze({ name: 'Veronica'});

> person.name = 'Betty';
> console.log(person); // -> {name: 'Veronica'};

Copyright © 2024 Tismo Technology Solutions (P) Ltd

CONCLUSION

In JavaScript (or any framework using JavaScript), default every variable
to `const`. The compiler will indicate when there is an attempt by the
user to edit a constant. In those scenarios, just change it from `const` to
`let`.

It is recommended to default every variable created in JavaScript (or any
framework using JavaScript) to `const`. On situations where an attempt
is being made to edit a const variable,

Copyright © 2024 Tismo Technology Solutions (P) Ltd

REFERENCES

1. Use `const` and make your JavaScript code better :
https://medium.com/dailyjs/use-const-and-make-your-javascript-code-
better-aac4f3786ca1

2. [JavaScript] - What does const mean in JavaScript? :
https://www.shecodes.io/athena/37774-what-does-const-mean-in-
javascript#:~:text=In%20JavaScript%2C%20const%20is%20a,once%20it%
20has%20been%20declared

3. 100 Awfully Good Examples of Oxymorons :
https://www.thoughtco.com/awfully-good-examples-of-oxymorons-
1691814

https://medium.com/dailyjs/use-const-and-make-your-javascript-code-better-aac4f3786ca1
https://medium.com/dailyjs/use-const-and-make-your-javascript-code-better-aac4f3786ca1
https://www.shecodes.io/athena/37774-what-does-const-mean-in-javascript#:~:text=In%20JavaScript%2C%20const%20is%20a,once%20it%20has%20been%20declared
https://www.shecodes.io/athena/37774-what-does-const-mean-in-javascript#:~:text=In%20JavaScript%2C%20const%20is%20a,once%20it%20has%20been%20declared
https://www.shecodes.io/athena/37774-what-does-const-mean-in-javascript#:~:text=In%20JavaScript%2C%20const%20is%20a,once%20it%20has%20been%20declared
https://www.thoughtco.com/awfully-good-examples-of-oxymorons-1691814
https://www.thoughtco.com/awfully-good-examples-of-oxymorons-1691814

	The JavaScript Oxymoron
	Kishan Chandrashekhar Tismo Technology Solutions (P) Ltd. 29 January 2024
	ABSTRACT
	OXYMORONS IN ENGLISH
	OXYMORONS IN JAVASCRIPT
	SIGNIFICANCE OF LABELS
	LABEL REASSIGNMENT
	DOG SHOW OR TEA PARTY?
	FROZEN IN TIME
	CONCLUSION
	REFERENCES

