
A Novel Approach to Service Serial Peripheral
for Data Acquisition using EDMA3 in TMS320C6748 DSP

Harikrishnan Prabhakaran
Tismo Technology Solutions (P) Ltd.

21 June 2021

ABSTRACT
This article summarizes a novel approach in
which Enhanced Direct Memory Access
(EDMA3) in TMS320C6748 is used to service
a serial peripheral that acquires digital data
from external Analog to Digital Converters
(ADC). The discussed approach is
implemented in the application firmware
using TI EDMA3 drivers with TI SYSBIOS as
the RTOS kernel.

INTRODUCTION
With technology today any sort of quantity
or information can be translated into
electrical or an electromagnetic signal. The
signal of interest is often a continuous time
varying voltage or current. In other words,
they are inherently analog in nature. For the
various advantages, computers in today’s
world are designed to process data that is
discrete in quantity and in time. To bridge
the gap between real world and computing
world, Analog to Digital Converters (ADC)
are used to convert the analog signals to
digital data. Today’s market provides lots of
varieties of ADC as integrated circuits that
can be used for different applications. Most
of them typically provide a serial interface
like SPI (Serial Peripheral Interface) or I2C
(Inter-Integrated Circuit) to share the digital
data with microcontrollers or digital signal
processors.

This article describes a problem statement
in which the TMS320C6748[1], a low power

DSP from Texas Instruments (TI)
communicates with two external ADCs, one
primary and other secondary. The primary
ADC is capable of conversion of 8 channels
of data all at a maximum sampling rate of
32 kHz, and the secondary ADC is capable
of conversion of 6 channels of data all at a
maximum sampling rate of 1 kHz. Both of
the ADCs provide a Serial Peripheral
Interface (SPI). The SPI module allows a
duplex, synchronous, serial communication
between the DSP/MCU with peripheral
devices.[2] The protocol provides the
flexibility of connecting multiple devices to
the same SPI bus. The TMS320C6748 DSP
has two SPI peripherals integrated into it.
One of them is dedicated for
communication with another processor. The
second SPI peripheral in DSP is used in
Master mode to communicate with the SPI
bus to which both primary and secondary
ADCs are connected.

The data read by the SPI peripheral in DSP
can be collected using multiple approaches.
One approach is to poll for the SPI transfer
flags for each and every byte received and
transmitted by the peripheral. Second
approach is to use the interrupt capabilities
of SPI peripheral to interrupt the DSP core
every time a byte is transmitted or received.
Both of these approaches have significant
disadvantages in terms of wastage of
valuable processing clock cycles which
otherwise could be used for other useful

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 1



activities. Also, in the above mentioned
approaches, the DSP is almost incapable of
monitoring each and every byte of data at
higher data rates.

The article suggests an approach that
utilizes the potential of Enhanced Direct
Memory Access (EDMA3) in TMS320C6748
to service the SPI peripheral. Direct Memory
Access (DMA) is a widely used solution to
offload the data transfers between two
memory points from the CPU. EDMA3
primarily performs user programmed data
transfers between two memory slave points.
Other capabilities include servicing of event
driven peripherals such as serial ports,
software paging transfers between external
memory and internal memory etc. In the
approach discussed, EDMA3 peripheral is
user programmed to do automatic transfer
of data from SPI by configuring EDMA3 to
listen to SPI DMA events as well as the
GPIO bank interrupt events. The EDMA3 is
also programmed to auto reload the transfer
context after a transfer configuration is
exhausted.

The sections below discuss the EDMA
approach in detail.

TERMINOLOGY

EDMA3
The architecture of the EDMA3 controller in
TMS320C6748 has two principal blocks.

● EDMA3 channel controller
(EDMA3CC)

● EDMA3 transfer controller
(EDMA3TC)

EDMA3 channel controller acts as the
interface for the user to configure the

EDMA3 controller. It also serves to prioritize
the requests from software, or peripheral
events and raise transfer requests (TR) to
the transfer controller (EDMA3TC). EDMA3
transfer controller performs the actual data
movement based on the Transfer Request
Packet(TRP) submitted by the channel
controller. TRP includes the transfer context
information based on which EDMA3TC
performs data read/write to source and
destination addresses. The EDMA3
controller of TMS320C6748 has two EDMA3
channel controllers (EDMA3CC) and three
EDMA3 transfer controllers (EDMA3TC).
Each EDMA3CC supports upto 32
programmable channels for servicing
peripherals and memory. Out of the two
EDMA3CC, the synchronisation events (or
channels) of interest in the application are
in the first EDMA3 channel controller.

EDMA3 of TMS320C6748, the controller
provides a lot of potential features.[3] Of
these, the features significant to this article
are: multidimensional transfer support upto
3 dimensions, flexible transfer definition
specifically linking feature and interrupt
generation for transfer completion and error
conditions.

EDMA3 is programmed for data transfers
using the parameter RAM (PaRaM), a
programmable RAM space that stores
parameter RAM sets used by
DMA/QDMA/Linking channels. Each
channel controller in TMS320C6748
supports upto 128 PaRaM set entries. Of
these, the first 32 in each controller are
reserved for DMA channels supported by
the respective channel controllers. Rest of
the PaRaM sets can be used for QDMA or
linking entries. Each PaRaM set is a 32 byte

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 2



transfer definition that stores the transfer
context for the data transfer corresponding
to the DMA channel. EDMA3CC services the
PaRaM sets when the trigger events occur.
Trigger events for DMA channels can be
either manual trigger (CPU triggered),
external event trigger, or chain triggered.
The PaRaM set structure supports linking /
autoreloading feature. With this, a PaRaM
set can be auto loaded with new transfer
characteristics after completion of transfer
defined by the current transfer definition.
The new transfer characteristics can be
stored in the linking PaRaM set entries.

An EDMA3 transfer is always defined in
terms of 3 dimensions. These three
dimensions are:

● 1st dimension or Array(A): The 1st
dimension consists of ACNT
contiguous bytes

● 2nd dimension or Frame(B): The 2nd
dimension consists of BCNT arrays
of ACNT bytes

● 3rd dimension or Block(C): The 3rd
dimension consists of CCNT frames
of BCNT arrays of ACNT bytes

Figure 1. PaRaM set contents
Each PaRaM set is organised into eight 32
bit words or 32 bytes as shown in Figure 1.

For more information regarding the PaRaM
set entries and other features, refer to
EDMA3 user guide.[3]

SPI
The Serial Peripheral Interface (SPI) is a
high speed synchronous serial duplex port
that allows a serial bit stream to be shifted
in and out of the device at a programmable
bit transfer rate. SPI typically consists of 4
lines: CLK (SPI Clock), MOSI (Master Out
Serial In), MISO (Master In Serial Out) and
CS (Chip Select). There are two SPI
peripherals in TMS320C6748. The SPI
peripheral in TMS320C6748 provides
features to program clock frequency, clock
polarity, clock phase and character length.
In addition it provides DMA support by
providing DMA synchronization events for
receive (REVT) and transmit (XEVT). These
events are used by EDMA to trigger DMA
transfers. When a character (say 1 byte) is
to be transmitted, the SPI peripheral raises a
XEVT signal. The EDMA controller which is
preprogrammed to do a transfer with
PaRaM set for the XEVT of SPI peripheral,
transfers data from source buffer to the SPI
transmit data register (SPIDAT1). Similarly,
when a character is received, SPI peripheral
signals DMA with REVT. The EDMA
controller with the transfer context
information corresponding to REVT, starts
reading the data from SPI receive buffer
register (SPIBUF) and transfers it to a
destination buffer.[4]

PROBLEM STATEMENT
Refer to Figure 2, the system consists of two
external ADCs, primary and secondary.

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 3



Figure 2. DSP along with primary ADC and secondary ADC

The primary ADC is capable of performing
data conversion of 8 channels, all of which
can be done with a maximum sampling rate
of 32 kHz. In addition to the SPI bus lines,
DRDY line (Data ready) of primary ADC is
connected to GPIO (General Purpose Input
Output) pin DSP. This connection is used by
primary ADC to inform the DSP that the
conversion of one set of samples is
complete. In other words, this line is pulled
low by primary ADC when the data
corresponding to a sample conversion is
ready. At 32 kHz, the line is pulled low every
31.25 microseconds.

The secondary ADC connected to the same
SPI bus, is capable of performing data
conversion of 6 channels all at a maximum
sampling rate of 1 kHz. Similar to primary
ADC, the DRDY line of secondary ADC is
connected to a GPIO pin in DSP.

For the application, DSP requires 3 channels
of data at 32 kHz from primary ADC and 4
channels of data at 1 kHz from secondary
ADC. In response to the DRDY from the
primary ADC, DSP needs to activate the
primary ADC using the respective chip

select and fetch ADC data from the primary
ADC. The data size in primary ADC is 12
bytes (3 status bytes + 3 bytes * 3
channels). The transfer has to happen
within 31.25 microseconds after which the
next sample is available in the data
registers of primary ADC. Similarly, the
secondary ADC which is operating
asynchronously with respect to primary ADC
interrupts the DSP every 1 milliseconds.
DSP needs to use the same SPI bus to
communicate with the secondary ADC after
activating the corresponding chip select.
The read data opcode size for secondary
ADC is 16 bytes.

The primary ADC and secondary ADC
operate with different SPI clock frequency
and clock phase. SPI clock for primary ADC
can be a maximum of 20 MHz and that for
secondary ADC can be a maximum of 16
MHz. The challenge is to fetch data from
both of these ADCs ensuring that no
samples are missed by the DSP from any of
these ADCs. In addition, there should be
enough time in DSP to perform various DSP
routines on blocks of data collected from
both primary and secondary ADC.

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 4



SOLUTION
The primary objective of the solution is to
ensure that the data transfer with the ADCs
are done reliably with minimal intervention
of the DSP core so that the valuable system
clock cycles are available for DSP routine.
This is done by utilizing the EDMA3 of DSP
in serial peripheral servicing mode. The
configuration of EDMA3 for this usage
mode is described in sections below. The
solution is implemented using the TI
processor SDK RTOS for OMAPL138 (v
06.03.00.106). The processor SDK has
following versions of SYSBIOS and EDMA3
Low Level Driver (LLD).

SYSBIOS 6_76_03_01

EDMA3 LLD 2_12_05_30E

SPI Configuration
SPI peripheral for communication with the
ADCs are initialized with the below
mentioned configurations.

● Two SPI Data format registers, say
SPIFMT0 and SPIFMT1 are
initialized with the clock, phase and
polarity configurations for primary
and secondary ADC respectively.
One of these data formats can be
used later during data transmission
by setting DFSEL bits in the SPIDAT1
register.

● SPI is configured in 4 pin mode and
also the chip select lines
corresponding to primary and
secondary ADC is enabled. The chip
select can be later selected by using
CSNR bits in the SPIDAT1 register.

● Character length in SPI peripheral is
configured to be 8 bit (1 byte)

● Interrupts from the SPI peripheral
are disabled by default.

● After the initial configuration
communication with the primary
ADC and secondary ADC, the SPI
peripheral is disabled.

EDMA3 configuration
All the synchronisation events of interest,
namely the GPIO bank interrupt event, SPI1
Receive event and SPI Transmit event are
associated with the EDMA3 Channel
controller 0. Therefore, the EDMA3 instance
0 is initialized using the EDMA3 initialization
functions provided by the EDMA3 LLD.

GPIO configuration
Bank level and pin level interrupt
configurations are configured appropriately
for GPIO pins connected to the DRDY of
primary ADC and secondary ADC. The GPIO
pin connected to primary ADC is in Bank 1
and that of secondary ADC is in Bank 2. A
SYSBIOS Hardware Interrupt (HWI) instance
is configured for the DRDY of secondary
ADC.

Communication with Primary ADC
Before starting the conversion process in
primary ADC, the below mentioned PaRaM
sets in EDMA3 are programmed. The
PaRaM set entries for each of the PaRaM
sets are depicted in Figure 3. The EDMA3
PaRaM set is configured to do 12 byte SPI
transfer for each of DRDY interrupt from
primary ADC for 16 times, after which the
DSP is interrupted to process the block of
data collected for last 500 microseconds (
assuming 32 kHz sampling rate). Using the
linking feature, the PaRaM sets are also
configured to do an auto load with the new

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 5



transfer definitions for the next sixteen 12
byte SPI transfers.

Note: EDMA3 LLD mandates that the
DMA/Link channels for the below channels
are requested before the PaRaM sets are
configured.

A. GPIO Bank 1 Interrupt (PaRaM #7) :
DRDY line of primary ADC is
connected to Bank 1. Therefore, the
PaRaM set corresponding to Bank 1
needs to be configured in such a
way that a SPI transfer is triggered
by DRDY signal from primary ADC.
The transfer defined in PaRaM set is
to perform a 4 byte write to SPIDAT1
register of the SPI peripheral. Data to
be written to the SPIDAT1 register is
shown in Figure 3. A write to
SPIDAT1 register causes the SPI
peripheral to clock out 1 byte. It is to
be noted that ACNT is set as 4,
BCNT is set as 1 and CCNT is set as
16. Also, in the OPT parameter entry,
the PaRaM set is configured to
perform AB synchronised transfer so
that BCNT*ACNT bytes are
transferred for CCNT events.

B. Link set for GPIO event (PaRaM
#33): This set is a copy of PaRaM
#7. In PaRaM #7, link address points
to the PaRaM #33. This is to auto
load the PaRaM #7 after completion
of 16 transfers corresponding to 16
DRDY interrupts.

C. SPI1 Transmit Event (PaRaM #19) :
The initial configuration in the

PaRaM set is a dummy transfer
(since ACNT is set as 0). Therefore
for the first XEVT from SPI, there
won’t be any meaningful data
transfer. The reason for this
configuration is explained in the
descriptions following. The link
address is configured to link to
PaRaM #34, the first link channel for
SPI Transmit event.

D. Link set 1 for SPI Transmit event
(PaRaM #34): After the first dummy
transfer by PaRaM#19, the entries of
PaRaM #34 is loaded to the PaRaM
#19. The PaRaM #34 have transfer
definition to perform 11 bytes of
transfer as the first byte is written by
the GPIO PaRaM #7. It is to be noted
that ACNT is set as 1, BCNT as 11
and CCNT as 1. The transfer type is
A-Synchronised transfer. Therefore
the PaRaM set is exhausted after 11
XEVT from the SPI peripheral. The
link address points to PaRaM #35,
second link set for SPI Transmit
event.

E. Link set 2 for SPI Transmit event
(PaRaM #35) : This set is a exact
copy of PaRaM #19. The
significance of this set is to auto
load the SPI PaRaM #19 with the
initial transfer definition for dummy
transfer.

F. SPI1 Receive event (PaRaM #18):
The transfer definition in this PaRaM

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 6



Figure 3 : EDMA PaRaM set configuration for Primary ADC.
Buffers used are also shown in the image.

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 7



set performs one byte transfer from
SPI Receive buffer to the destination
address. It is to be noted that ACNT
is set as 1, BCNT is set as 12 and
CCNT is set as 16 and transfer type
is set as A-Synchronised transfer.
Therefore, the PaRaM set is
exhausted only after 12*16 REVT
events from SPI peripheral. The
destination address in the PaRaM
set is to buffer location, say Ping
buffer. Also, the CIDX and BIDX for
destination is set as 1 so that the
address is incremented for each
REVT. The PaRaM set is linked to
PaRaM #36, the first link set for SPI
Receive event

G. Link set 1 for SPI Receive event
(PaRaM #36): Compared to PaRaM
#18, the only difference is
destination address and link
address. The destination address
points to the Pong buffer. The link
address points to PaRaM #37,
second link set for SPI receive event

H. Link set 2 for SPI receive event
(PaRaM #37): This set is a exact
copy of initial configuration of SPI
receive event PaRaM set, PaRaM
#18. This is to auto load the PaRaM
#18 with the initial configuration
after the transfer of 12*16 bytes
each to Ping and Pong buffers.

After the above PaRaM sets are configured,
the events corresponding to GPIO Bank 1
interrupt (Event #7), SPI Transmit event
(Event #19) and SPI Receive event (Event
#18) are enabled. Thereafter the SPI
peripheral and SPI DMA event support is
enabled.

Immediately after the SPI peripheral and SPI
DMA event is enabled, a SPI Transmit event
(XEVT) is signalled by the SPI peripheral
because the transmit buffer is empty. For
this event, a dummy transfer defined initially
in PaRaM #19 is performed by EDMA3 and
PaRaM #19 is loaded with PaRaM #34. For
this dummy transfer to SPIDAT1 register, no
byte is clocked out by SPI to primary ADC.
After the acquisition is started in primary
ADC, the first DRDY interrupt to DSP is
received after 31.25 microseconds. EDMA3
on receiving the DMA event corresponding
to GPIO Bank 1 interrupt, submits a transfer
request based on PaRaM #7, to do a 4 byte
write to SPIDAT1 register.

SPI peripheral after clocking out 1 byte to
primary ADC emits a SPI Transmit event
(XEVT) for the transmit buffer is now empty.
Almost immediately after this, the receive
event (REVT) is also emitted because it has
received a byte back from primary ADC. The
PaRaM #19 performs a single byte for each
received XEVT. After each byte is clocked
out, a XEVT is emitted and PaRaM #19
services 11 such XEVT events. After the last
11th byte, PaRaM#19 is loaded with PaRaM
#36. This corresponds to a dummy transfer.
Therefore, the SPI does not clock out data
until it is triggered again by the PaRaM#7.

SPI ParaM #18 processes the received data
transfers for the SPI receive events received
for each of the transmit writes made above.
The initial transfer definition is to write to a
Ping buffer. The destination address is
switched to Pong buffer after 12 bytes * 16
transfers (after 500 microseconds). This is
required so that DSP can use the Ping buffer
data for further data processing while

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 8



EDMA has already started transferring the
next set of samples to the Pong buffer.

Therefore, the DSP is interrupted after
completion of data transfer from primary
ADC every 500 microseconds. Meanwhile,
the EDMA controller in the background
continues to do the transfer for DRDY
interrupt received 31.25 microseconds after
the transfer complete interrupt to DSP.

Communication with secondary ADC
Since the secondary ADC is connected to
the same SPI peripheral, it is required to
make use of EDMA PaRaM #19 and EDMA
PaRaM #18 to transfer data with secondary
ADC as well. However, these PaRaM sets
cannot be modified, if there is an ongoing
transfer with primary ADC.

The DSP firmware is configured to be
interrupted for every DRDY interrupt from
secondary ADC. This happens every 1
millisecond, if the secondary ADC is
configured to have a sampling rate of 1 kHz.
In the interrupt callback for the DRDY signal
from secondary ADC, DSP sets a service
request flag (SRF) for fetching ADC data
from secondary ADC.

If the aforementioned communication with
primary ADC is active, the DSP is interrupted
every 500 microseconds by the transfer
completion interrupts for data from primary
ADC. At 32 kHz sampling rate of primary
ADC, there is a time frame of 31.25
microseconds before which SPI and its
associated EDMA SPI PaRaM sets can be
used for communication with secondary
ADC. Therefore in the transfer completion

callbacks of primary ADC, DSP checks if
SRF is set. If this is set, the DSP first
disables the DRDY event from primary ADC
to prevent any chances of PaRaM #7
disrupting the transaction with the
secondary ADC. Thereafter it modifies the
EDMA PaRaM set for SPI Transmit and
Receive events as mentioned below (Refer
to Figure 4).

A. SPI1 Transmit event (PaRaM #19) :
This PaRaM set contains the
transfer definition to transfer the
data byte by byte from the buffer
that contains the ADC read opcode
(16 bytes) to the SPIDAT1 register. It
is to be noted that the source
address points from the second byte
of the buffer for the first byte is
written by DSP to trigger the SPI
transfer. ACNT is set as 1, BCNT is
set as 15 and CCNT is set as 1 and
transfer type is set as
A-Synchronised transfer. The PaRaM
set also links to PaRaM #35 used for
primary ADC communication

B. SPI1 Receive event (PaRaM #18):
This PaRaM set contains the
transfer definition to transfer the
data from SPI receive buffer
(SPIBUF) to the secondary ADC data
buffers in DSP for every received
byte. It is to be noted that ACNT is
set as 1, BCNT as 16, CCNT as 1 and
transfer type as A-Synchronised
transfer. The link address is set as
PaRaM #36 if the last buffer used
for primary ADC received data is the
Ping buffer. If the last buffer is Pong
buffer, the link address is set PaRaM
#37.

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 9



Figure 4: PaRaM set configuration for secondary ADC

Note that the PaRaM sets for the SPI events
are configured to load the PaRaM sets of
primary ADC so that transfer context is set
back to the transfer context of primary ADC
automatically after the transfer with
secondary ADC is complete.

After the PaRaM sets are configured for
secondary ADC transfer, SPI transaction is
triggered by DSP. This is done by a 4 byte
write to the SPIDAT1 register. The 4 bytes
written to have information regarding the
data format and chip select to be used for
secondary ADC and the first byte to be
transmitted to the secondary ADC. This
write further triggers the SPI transmit and
receive events. This is handled by the
PaRaM sets #19 and #18 for secondary
ADC. After the transfer of 16 bytes is
complete, the EDMA PaRaM #19 and
PaRaM #18 is auto loaded with the transfer
context of primary ADC. A transfer complete
callback for the 16 bytes received from
secondary ADC is also raised to DSP. In the

callback the DRDY interrupt event for
primary ADC is enabled so that EDMA
controller resumes its transfer for primary
ADC.

To summarise, the DSP core is interrupted
every 500 microseconds by EDMA for the
transfer completion with primary ADC for
the last 16 sets of samples. In the transfer
completion callbacks for primary ADC, DSP
may switch the EDMA transfer context if the
data is ready in secondary ADC.

CONCLUSION
The article discussed a promising approach
to utilize the EDMA for servicing SPI
peripheral based on the data ready signals
from primary ADC and secondary ADCs. The
data integrity of the data received from the
ADCs with the discussed approach was
verified. Clearly, the rich capabilities of
EDMA is flexible enough to suit any data
transfer even more complex than the data
transfer discussed in this article.

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 10



REFERENCES

1. TMS320C6748 Fixed and Floating point DSP (Rev G), Texas Instruments (June
2009-Revised January 2017). TI Literature number : SPRS590G

2. SPI Block Guide V03.06, Motorola, Inc (Revised: 04 Feb 2003)

3. TMS320C6748 Technical Reference Manual, Texas Instruments (April 2013-Revised
September 2016). TI Literature number : SPRUH79C

4. TMS320C6748/46/42 and OMAP-L138 Processor Enhanced DMA Controller User’s Guide,
Texas Instruments (April 2010). TI Literature number : SPRUGP9B

5. EDMA3 User guide, Texas instruments (November 2014 - Document version 02.12.XX.XX)

6. PaRaM set configuration for primary ADC discussed in this article is inspired from the TI
E2E forum discussion : https://bit.ly/3zO3U5i

Copyright © 2021 Tismo Technology Solutions (P) Ltd. 11

https://bit.ly/3zO3U5i

