
1

Analytical Instruments Empowered

by Rust
Deepak Hegde

Vishal Keshava Murthy

A case study on the use of the Rust programming language in

Analytical Instrument development

Presented at Pittcon 2021

Tismo Technology Solutions (P) Ltd.
22/2, Palmgrove Road

Bangalore 560047, INDIA

2

ABSTRACT

The objective of this paper is to explore the
value of the Rust programming language in
the development of an analytical instrument.
The study was carried out by developing a
part of an Analytical Instrument software
using Rust. Experimental results and
anecdotal evidence suggest that Rust is a
viable option to tackle typical challenges
associated with developing analytical
instruments. Rust’s emphasis on safety, its
support for modern programming
paradigms and a thriving Eco system aids
the developer greatly in rapidly developing
robust and reliable, high quality code
without incurring any performance
penalties.

1. INTRODUCTION

A typical analytical system in the embedded
space is a combination of a multitude of
hardware and software subsystems. The
development of these high stakes, complex
systems which demand high reliability,
computational accuracy and repeatability
often poses unique technical challenges to
the developer. Long lifetimes, strict
regulatory requirements and critical time to
market windows further add to the
complexity of development from a product
management perspective.

Rust is a statically typed, systems level
programming language designed for safety,
concurrency and performance. The
language promises to alleviate the design
challenges that plague the world of
embedded software development. The
study focuses on exploring these issues in
detail and the language as a whole, diving
into the ecosystem, language constructs,

design paradigms and other facets of Rust in
the context of software development for an
analytical instrument, which in this case is
an elemental analyzer.

Background

Analytical systems encompass various
hardware interfaces, sensor frontends,
external hardware and software systems,
communication mediums, computations
and HMIs.
An elemental analyzer for example could
contain sensors, values, actuators, PWMs,
communication interfaces that make up the
hardware interfaces of the system. It would
also need data acquisition subsystems for
measuring temperature, pressure, flow etc.
In addition to these hardware interfaces the
system would need software subsystems for
instrument configuration management,
various control processes for all relevant
parameters, coupled with sensor data
calibration processing and analyzing
capabilities.
Processing and control aside, a system of
this nature also mandates the need for
various forms of communication interfaces
and corresponding protocol support.
Command interface and UI is also a part of
this growing list of requirements.

Software reliability, repeatability of
measurements and computational accuracy
are critical to products of this nature. The
environments in which these devices are
deployed demand adherence to multiple
safety and regulatory compliance. Time to
market is also paramount to the commercial
success of such an undertaking.

Owing to the scale of features of a product
like this, abstraction of hardware and
functionality is a major hurdle in

3

architecting software. The control and
measurement algorithms deployed are
arduous to develop, implement and test.
The system is inherently asynchronous
which makes concurrency and safety
cardinal for reliable operation of the
software. A wide variety of standard
communication interfaces such as CAN,
Modbus, OPC etc. that need to be
supported adds to the complexity. Features
such as diagnostics, firmware upgrade
support, intuitive GUI and portability, while
not a part of the core features of the system
are still imperative from a usability and
convenience perceptive.

The key therefore, for successful
development of instrument software are
robust implementation architecture,
support for inherently safe and reliable
programming paradigms and the ability to
manage and abstract the complexities and
real time observance of the system.

C and C++ are the established programming
languages currently in use for embedded
software development. Something
seemingly as innocuous as the use of an
uninitialized variable can wreak havoc in an
otherwise perfect program. Once pointers,
memory management and concurrency are
involved, null pointer dereferencing,
dangling pointers, memory leaks, stack
corruption and a whole host of hard to track
problems that affect code in insidious ways
are introduced to the code base. The lack of
ready to use modules and associated
package managers, like npm or NuGet
offered by other modern languages also
result in slower development process
hindered by their inability to leverage
mature prewritten modules.

Rust, a relatively new systems programming

language, offers an important set of features
that promises to address most of the needs
established above.

Objectives

The main objective of this study was to
evaluate Rust as a language for the
development of embedded analytical
systems. Quantifiable Code metrics such as
code size, binary size were collected and
presented. In addition to these, soft metrics
like ease of development, debug support,
hardware architecture support etc. were
also evaluated.

Evaluation of RTIC, a real time framework
developed in Rust that employs an interrupt
driven approach to writing concurrent code
was also an important goal. The tool chain,
package management system, external
library support etc. were also put under
scrutiny since the development ecosystem is
an inseparable part of the software
development experience.

Since Rust is still evolving, it was also a part
of the research effort to recognize
shortcomings of the language and
determine future areas of study.

Scope of the research

1. Evaluation of Rust language features,
development ecosystem and library support

2. Evaluation of RTIC framework

3. Collection of code metrics for Rust code
compared against equivalent C code

4

Research methods

A development environment was set up
with the Rust toolchain including the Rust
stable and nightly compiler, package
manager cargo, Rust formatter, Rust
language server RLS and debugger
codeLLDB.

A TCD controller application, one of the
subsystems of the elemental analyzer
involving temperature control and
measurement, configuration management,
timed tasks, a simple CLI, status indication
and a PID loop were developed in both C
and Rust. The code bases were developed
iteratively using established best
development practices and were subject to
multiple reviews and refactoring to ensure
code quality and performance.

Code metrics were collected for both
applications under various optimization
settings. Other non-quantifiable aspects of
development such as development
environment, toolchain, ease of
development, testing support etc. were also
evaluated and presented.

The structure of the document

The following sections will be covered in the
report:

1. Overview of Rust
2. Embedded Rust
3. Embedded Rust ecosystem
4. Embedded Rust Crates
5. Developed application
6. Useful Language features
7. Observations

5

2. DETAILED ANALYSIS

2.1. Overview of Rust

Rust[1] is a multi-paradigm systems
programming language developed by the
Mozilla foundation with heavy emphasis on
safety, performance and support for
concurrency. This systems programming
language converts memory and concurrency
related run time problems into errors that
get caught early during the compilation
process. The compiler accomplishes to do so
by adhering to the following fundamental
principles.

1. Immutability: Every entity is immutable
by default
2. Ownership: Every entity has a clear
owner at all times which determines its
scope and lifetime. This enables memory
safety at compile time without relying on
garbage collection

3. Move semantics: Assignment, copy and
move operations are clearly distinct and
operate by different sets of rules.

While the core features described above
help with code correctness, a variety of
concepts and paradigms inspired heavily
from other languages such as pattern
matching, anonymous functions and
algebraic data types from functional
programming languages, traits and
structures from object-oriented
programming and features such as macros
and template programming from
metaprogramming languages makes Rust a
very powerful and expressive language.

Rust also features the concept of unsafe
code, sections of the code can be marked
unsafe, inside of which potentially
dangerous operations such as raw pointer
manipulation can be made under the
discretion of the programmer foregoing the
compiler checks for extra flexibility. Other
prominent features include built in support
for testing, code formatting and profiling.

2.2. Embedded Rust

Bare-metal hardware environments are first
class citizens of Rust[2]. The language itself is
built in layers with a core layer libcore which
implements platform agnostic operations,
provides API for language primitives and
APIs for processor features. All platform
integration APIs and the run time
environment are implemented in the stdlib.
Development for embedded applications
take place in a no_std environment meaning
that only the core layer is used. Memory
management schemes, run time
environments[12], stack protection schemes
and data structures[15] such as vectors and
maps are added as required externally on
top of the libcore using crates[11].

This distinction between the core and the
standard library ensures that the features
required for the application can be
customized as required based on the target
hardware and application requirements.
Rust also extends the powerful Ownership
mechanism to manage the peripherals by
treating them as variables. One can enforce
singleton pattern on peripherals, and these
can be shared as read-only, read-write types
using the borrow checker paradigm

Since concurrency is one of the core focus of
rust, depending on the target platform,
there is native support for atomic
operations. Synchronization mechanisms
such as critical sections, mutexes, interior
mutability refcells are also provided. Real

6

Time Interrupt Driven Concurrency
framework[6], RTIC is another option if RTOS
like functionality is required.

Support for interoperability with C is
another attractive feature of rust. This is
useful when validated C code needs to be
integrated with Rust. Rust provides Foreign
Function interface (FFI) for this purpose.
Tools like bindgen aid in generation of
mapping metadata between languages.[1][8]

2.3. Embedded Rust ecosystem

A good development ecosystem is critical for
the adoption of the language into
production quality software work. The Rust
ecosystem while still in its infancy, provides
excellent tools and reasonable coverage for
most target platforms. The toolchain set up
process is fairly straight forward, and is
explored in detail in the later sections of the
paper.

There is extensive support for the ARM
cortex M series of processors, with
Hardware abstractions available for MCUs
from major chip vendors such as STM,
Microchip, NXP, TI and Nordic. Xtensa and
AVR are some of the notable architectures
that yet aren't supported.[11]

The conventional layered approach for
development is followed, with the lowest
layer being the Peripheral Access Crate. The
PAC defines memory mapped registers for
the particular target hardware. This layer is
generally used in conjunction with a micro
architecture crate that encompasses
routines and functions common to the
target architecture. SVD2Rust is a tool that
can be used for the generation of these
target specific Peripheral Access crates.[14]

HAL crates are built atop PACs, by providing
definitions to traits defined in
embedded-hal[12]. This layer provides
peripheral specific hardware APIs using
which applications can be built. It should be
noted however that these HALs are
community driven and often do not support
all features provided by the hardware due to
which Hardware registers of the device may
still have to be manipulated directly through
services provided by the device specific PAC.

RustC[3], the Rust compiler is pivotal to the
traction that Rust has been gaining lately.
Compilation times can be pretty long in
contrast with that of C or C++ but the
output is fairly well optimized for the target
platform. The error messages are very
explicit and provide relevant and helpful
suggestions. Rust also ships with package
and build manager cargo that helps with the
build process as well with dependency
management and integration of external
libraries crates. RustC, and cargo coupled
with the debugger GDB can be setup inside
text editors such as VScode for a complete
building, flashing and debugging platform.
The Rust ecosystem also features inbuilt
support for testing and code profiling.
Formatter rustfmt and static code checker
rust-Clippy are other utilities packaged into
the system.

2.4. Embedded Rust crates

Rust crates are a large part of the appeal of
embedded rust. The libraries managed by
Cargo[4] helps the developer in leveraging
the Rust community and integrate tested
and verified features into the code. Crates
are an indispensable part of the Rust
ecosystem.

7

Since bare-metal embedded Rust
development takes place in the embedded
environment it is up to the developer to
select the required memory management
scheme utilizing the respective crate[11].
PACs and HALs introduced earlier, if
available are also developed in the form of
crates that can be used to build up
applications. Several crates that are
designed to be used in no_std environments
provide a wide variety of functionality
ranging from atomic access, bit field
manipulation methods, circular buffers and
heapless data structures. CRCs, linear
algebra libraries, FFT support are some the
prominent math libraries. Device drivers[17]

for a large class of devices ranging from
simple peripheral based sensors, memory
modules, to displays and cellular modules
are also pervasive. Stacks developed in Rust
for Bluetooth, Ethernet are some of the
protocol crates that are gaining traction. PID
control[16], CLI[15] were some of the
application specific crates evaluated and
used in this project.

2.5. Application overview

Figure 1

The TCD subsystem of an elemental analyzer
for the detection of nitrogen content in
protein samples was developed for the sake
of the experiment. The overall system works
on the Dumas principle in which a sample is
purged and heated in a high temperature
combustion furnace in the presence of pure
oxygen such that the sample decomposes
into carbon dioxide, water, nitrogen dioxide
in addition with nitrogen as several oxides.

The combustion products are collected and
the gas mixture is passed over hot copper to
remove any oxygen and convert nitrogen
dioxides into molecular nitrogen. The
sample is passed through traps that remove
water and carbon dioxide. The measured
signal from the thermal conductivity
detector for the sample is then converted
into total nitrogen content.

The TCD detector subsystem was
implemented in both C and Rust on
TM4C123XX[10], an ARM cortex M4 based
board. Initial prototyping was carried out
using the Tiva launch pad with the same
MCU and an STM32F407 discovery board on
which the RTIC framework[6] was evaluated.

8

Figure: 2

A traditional layered architecture was
utilized for the code structure with the MCU
HAL making up most of the lower layers
through the tm4c123x-hal[13] crate for
dealing with various onboard peripherals
such as SPI, UART etc. Additional crates
were used for runtime[11], memory
management[14], and low-level register
access[17] functions. Other purely software
constructs such as PID control[16] and CLI[15]

were also built around crates for rapid
prototyping and development.

The hardware API layer was built atop the
previously described HAL. Object based
design approach was utilized here, grouping
all similar functions into modules that
exposed to the application layers above only
the functionality required.

The application layer is comprised of
independent tasks for PID control, Heater
control, Data acquisition and a command
Line Interface task. These were tied together

using the RTIC framework.[7]

2.6. Useful language features

The following language features were
heavily utilized for the development of the
project.

Struct and traits
Structures in Rust are similar to C struct
allowing heterogeneous data types. Unlike a
traditional Object Oriented programming
language Rust has no support for classes.
Object oriented behavior is implemented
using struct and traits instead. Traits are
implemented for structures giving the
structure traditional class like methods.
These methods however need to take an
explicit self parameter if they need to act on
themselves. Since immutability is a core
aspect of the language all elements and
traits are private and immutable by default.
Consider the heater struct defined below:

9

pub struct Heater
{
status : bool,
pwm_pin : pwm::EvenPWM<tm4c123x_hal::tm4c123x::TIMER2>,
pwm_period_us:u32 ,
pwm_duty_cycle:u32,

}
impl Heater
{
pub fn disable(&mut self)
{
self.status = false;
self.pwm_pin.disable(());

}

fn dutycycle_to_period(&mut self,duty_percent:u32) -> u32
{
let res = duty_percent*(self.pwm_period_us)/100;
return res ;

}
}

Code snippet: 1

Here, the disable trait is defined for
structure heater. The elements on the
structure are private by default and
therefore are not accessible to outside
modules. The disable function takes a
mutable reference to itself and acts on the
elements of the structure Heater. This API,
marked as public is exposed to other
modules so that they can interact with the
heater structure. The function
dutycycle_to_period is a private method
that is inaccessible to outside modules.

Option type
Null types are a common source of bugs in
most traditional programming languages.
Rust provides Option type and Result type
that can represent variables that can be
uninitialized. Internally they are
implemented using templates.
Consider the example below:

pub fn do_pid_control_task(softtimer_block:&mut SoftTimers, task_frequency:u32, pid_bloc
k : &mut PidControl, prev_output : f32) ->Option<f32>
{
if softtimer_block.check_timer_ms(ESoftTimers::LedSoftTimer)
{
let res:Option<f32>;
let control_output = pid_block.run_loop(prev_output);
res = Some(control_output);
softtimer_block.set_timer_ms(ESoftTimers::PidSofttimer,task_frequency);

10

return res;
}
else
{
return Option::None;

}
}

Code snippet: 2

The temperature control task runs only
periodically and returns res which is an
option type. The res type contains the result

of the operation if the timer has expired or
returns the None type

heater_control::do_temperature_control_task(&mut my_mcu.heater_controller , pid_output)
Code snippet: 3

This result is captured in option variable
pid_output and passed down to the
do_temperature_control_task. The function
can then act on this parameter depending
on whether it has a value or not.

Pattern Matching
The match statement is used extensively in
the program, particularity when the option
type is involved. The
do_temperature_control_task from the
previous example utilizes match effectively
as shown.

pub fn do_temperature_control_task(pwm_block : &mut Heater, control_input_option : Opti
on<f32>)
{
match control_input_option
{
Some(val) => {pwm_block.set_dutycycle(val as u32);},
None => {},

}
}

Code snippet: 4

Here, if the option type does not have a
value then, no action is taken.

Closures

Closures or anonymous functions as known
in C++ are used extensively in the PACs.
Register manipulations are done utilizing
closures

timer.icr.write(|w| w.tatocint().set_bit());
Code snippet: 5

11

In this example, |W| is the closure that
performs the operation for setting a
respective bit.

Modules
The Rust file system employs modules for
structuring code. Files are treated as
modules each with their own namespaces,
with access specifier as explained above

determining the visibility of functions inside.
The scope operator as used in C++ is also
available in Rust to keep the code structured
and modular. The syntax results in highly
modular yet readable code without having
to deal with separate implementation and
interface files.
Module heater control is imported into the
file here using the keyword mod

mod heater_control;
heater_control::do_temperature_control_task(&mut my_mcu.heater_controller , pid_output)
;

Code snippet: 6

Public functions exposed by the heater
module are accessed using the scope
operator in this file.

Unsafe blocks
unsafe keyword is necessary in places where

the compiler cannot guarantee safety. While
the language discourages the use of unsafe,
it is useful when dealing with raw pointers
or global values when it is determined to be
safe to do so by the developer as
demonstrated in the code snippet below.[9]

unsafe {
tm4c123x_hal::tm4c123x::NVIC::unmask(tm4c123x_hal::tm4c123x::Interrupt::TIMER0A)

}
Code snippet: 7

Templates
Templates are powerful features from the
metaprogramming paradigm. It is useful for
generic programming and is used by Rust to
accomplish monomorphization. Templates
result in the increase in compile types but
incur no performance penalties. Templated
types are also used in the HAL libraries for

typestate checking[3]. The hardware
therefore can be characterized as having
only a limited set of valid states with a clear
sequence of possible operations. A clear
example of this is the GPIO pin which is
modeled such that the validity of operations
on it is determined by the state of the pin.
This results in much safer code that prevents
wrong initialization at compile time

gpioc::PC5< AlternateFunction< AF1,PushPull>>
Code snippet: 8

PC5 here is defined as a pin of type
Alternate type AF1 with push pull

configuration. The methods that can be
applied on this pin are dictated by the

12

typestate. It would result in a compiler error
for an invalid method not defined for pins of
this type.

Concurrency
Rust provides several features to aid
concurrency.
The common paradigm of Foreground
background process of using superloops
with interrupts is well supported, with the
use of attributes to define interrupt
handlers. On a few platforms atomic access
is supported for simple and effective means

of guaranteeing safe concurrent access.
While the usage of global mutable data is
discouraged to prevent data race conditions,
they can help still be used inside unsafe
blocks under the programmers discretion.[3]

The example below demonstrates the use of
both the interrupt attribute for defining the
timer0 interrupt as well as the utilization of
global mutable variable
RUNNING_COUNTER.

static mut RUNNING_COUNTER:u32 = 0;
#[interrupt]
fn TIMER0A()
{

unsafe {
let periph_temp = tm4c123x_hal::Peripherals::steal();
let timer = periph_temp.TIMER0;
timer.icr.write(|w| w.tatocint().set_bit());

if RUNNING_COUNTER > MAX_TICK {RUNNING_COUNTER = 0;}
else {RUNNING_COUNTER+= 1 ;}

}
}

Code snippet: 9

Critical sections are another crude but
effective concurrency mechanism supported
by Rust. The functionality is provided by
runtime environment crates such as
cortex_m[12]. These are often used with
closures, whose operations take place

within the critical section. The runtime
environment crate cortex_m also provides
standard resource management
mechanisms such as mutexes to ensure safe
concurrent access.
In the example below, the value of
LED_MUTEX is set inside a critical section.

static LED_MUTEX: Mutex<Cell<u8>> = Mutex::new(Cell::new(0));
cortex_m::interrupt::free(|cs| LED_MUTEX.borrow(cs).set(2));

Code snippet: 10

13

Real-Time Interrupt-driven Concurrency
(RTIC)[7] is a framework that can be used for
the development of larger more intricate
real time systems. Features such as tasks,
message passing, queues and scheduling
provided by this framework makes this an
excellent middle ground between
developing concurrent programs from
scratch using the concurrency mechanisms
explained above and using full blown
schedulers such as FreeRtos.

2.7. Development experience

Learning
The initial learning curve for Rust is steep
especially for programmers with only C/C++
background. Programming concepts novel
to Rust such as the borrow checker and
move semantics are challenging and take
time to get accustomed to. HAL interface
construction requires careful thought and
planning, established imperative or object
oriented approach for the same are hard to
express in Rust. There are various official
and community driven high quality
documentation for embedded systems
development in Rust. The crates however
are purely community driven and therefore
vary wildly in quality.

Setup and tools
Setting up the development ecosystem is
not a very involved process. There are
several tools that help the developer get
productive with the tool chain fairly early.
Rustup is the installer which aids in setting
up the compiler and package manager for
development in Windows, Linux and Mac
environment. Package management is
handled by the Rust package manger Cargo,
which also serves as the build system with

which project creation, library creation and
management are handled. CodeLLDB in
conjunction with JlinkGDB was used for
flashing and debugging binaries.
Since there were no IDEs for Rust
development at the time, Microsoft Visual
Studio Code was used with the official Rust
extension. Tasks were setup for building and
flashing the project within the IDE.
Debugging within the IDE was setup using
cortex-debug extension used in conjunction
with Jlink GDB server.

Productivity
With the initial set up out of the way,
community driven libraries hosted on crates
were a good starting point for the project.
Embedded HAL implementation for TI and
STM boards were readily available, although
some features were unavailable or under
the process of development requiring
register level manipulation of the hardware
using the respective Peripheral Access crates.
This is in stark contrast with C code since
chip manufacturer provide near complete
HAL which cuts down on development time
of lower layers.
Application development on the other hand
was made much simpler due to external
Crates. Suitable implementations for circular
buffers, PID algorithms, CLI implementations
etc. hosted on crates.io were easily
integrated into the code base. Inbuilt
support for testing and a built-in formatter
also contributes to writing better quality
code faster.

Ease of development
Rust provides strong abstraction with no
performance tradeoffs which makes for
highly expressive code. The compile times
are quite large especially if templates are
used heavily, due to all the static checks
performed. The error messages provided by

14

the compiler are helpful and generally very
accurate. Use of modules help with code
architecture and help develop highly
structured easily maintainable code. Rusts
statically typed nature feel prohibitive at
times since it disallows implicit conversions,
or unhandled cases thereby making it hard
to use for prototyping. The use of raw
pointers is discouraged and the language
does not fully support conventional OOP
paradigms.

2.8. Observations

The developed C and Rust code were used
for the capture of key code metrics. The
development process was kept identical for
both languages. An effort was made to use
idiomatic conventions to result in not only
high performance but also high quality
maintainable code. Memory footprint data
were collected from release versions of both
code bases with link time optimization
enabled. The results are tabulated below:

Size No Optimization Size Optimized
ROM RAM ROM RAM

C 20956 1348 18970 1243
Rust 100780 24 27936 24
The code footprint in Rust is 50% larger

Table: 1

Lines of code were also captured for both
metrics as they are indicative of the
development effort.

Lines of code
C 1750
Rust 1500
Rust code-base is 15% smaller

Check Appendix section for metrics
collected in other optimization profiles.

SUMMARY AND CONCLUSIONS

The Rust programming language offers a
rich set of features emphasizing safety
which results in the development of reliable
software. Safe programming paradigm helps
in meeting safety requirements whereas
built-in support for testability helps with
reliability and verifiability of critical
applications. Development process aided by
modern programming constructs and
portability across hardware, thanks to highly
modular architecture, helps in improving
time to market. The open source community
driven development helps in quick
adaptability in both developer communities
and organization looking for a safe,
sustainable and stable ecosystem.

Code metrics collected suggest that the
code developed in Rust while about fifty
percent larger than code developed with its
counterpart C, is smaller in terms code base
by close to fifteen percent. These penalties
however can be overlooked considering
improvements in code quality. While the
ecosystem for embedded Rust is satisfactory
but pales in comparison to the maturity that
C/C++ provides. However the ecosystem is
continuously evolving, and as the language
gains traction this aspect will get better.
Overall, this modern language that is not
weighed down by legacy like C++ is, offers a
refreshing new option which, regardless of
its future demands strong consideration

Table: 2

15

References

1. S. Klabnik, C. Nichols. (2020). The Rust Programming Language.
<https://doc.rust-lang.org/book/title-page.html>

2. Embedded Working Group. (2020). The Embedded Rust Book.
<https://docs.rust-embedded.org/>

3. Embedded Working Group. (2020). The rustc book
<https://doc.rust-lang.org/rustc/what-is-rustc.html>

4. Embedded Working Group. (2020). The Cargo book
<https://doc.rust-lang.org/cargo/index.html>

5. Embedded Working Group. (2020). The Rustonomicon
<https://doc.rust-lang.org/nomicon/index.html>

6. P. Lindgren, Embedded Systems Group. (2020). Real-Time Interrupt-driven Concurrency.
<https://rtic.rs/0.5/book/en/preface.html>

7. Embedded Working Group. (2020). Discovery.
<https://docs.rust-embedded.org/discovery/>

8. Embedded Working Group. (2020). The Embedonomicon.
<https://docs.rust-embedded.org/embedonomicon/>

9. Texas Instruments. (2014). TM4C123GH6PMMicrocontroller.
<shorturl.at/btxB4>

10. The resources team. (2021). rust-embedded
<https://github.com/rust-embedded/awesome-embedded-rust>

11. The Cortex-M Team. (2020). Cortex-m-rt
<https://docs.rs/cortex-m-rt/0.6.13/cortex_m_rt/>

12. J. Pallant, J. Aparicio. (2020). embedded-hal
<https://docs.rs/embedded-hal/0.2.4/embedded_HAL/>

13. D. Wood, J. Pallant, J.Aparicio, M. poulhies. (2020). tm4c123x-hal
<https://docs.rs/tm4c123x-hal/0.10.2/tm4c123x_hal/>

14. J. Aparicio, P. Lindgren. (2021). heapless
<https://docs.rs/heapless/0.6.1/heapless/>

https://doc.rust-lang.org/book/title-page.html
https://docs.rust-embedded.org/
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://doc.rust-lang.org/cargo/index.html
https://doc.rust-lang.org/nomicon/index.html
https://rtic.rs/0.5/book/en/preface.html
https://docs.rust-embedded.org/discovery/
https://docs.rust-embedded.org/embedonomicon/
https://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf?ts=1615786377408&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTM4C123GH6PM
https://github.com/rust-embedded/awesome-embedded-rust
https://docs.rs/cortex-m-rt/0.6.13/cortex_m_rt/
https://docs.rs/embedded-hal/0.2.4/embedded_hal/
https://docs.rs/tm4c123x-hal/0.10.2/tm4c123x_hal/
https://docs.rs/heapless/0.6.1/heapless/

16

15. R. Horn. (2019). light-cli
<https://rudihorn.github.io/light-cli/light_cli/>

16. K. Elkabany. (2020). PID Controller for Rust
<https://docs.rs/pid/3.0.0/pid/>

17. D. Dockter. (2021). device-driver
<https://docs.rs/device-driver/0.1.1/device_driver/

APPENDIX

Appendix A

Optimization results for Rust code base

Optimization
levels

Text Data BSS

No Optimization 100780 8 16
Size optimized 27936 8 12
Size optimized 28480 8 16
Size optimized 38392 8 16

Table: 3

https://rudihorn.github.io/light-cli/light_cli/
https://docs.rs/pid/3.0.0/pid/
https://docs.rs/device-driver/0.1.1/device_driver/

	ABSTRACT
	Background
	Objectives
	Scope of the research
	Research methods
	The structure of the document

	2.DETAILED ANALYSIS
	2.1. Overview of Rust
	2.2. Embedded Rust
	2.3. Embedded Rust ecosystem
	2.4. Embedded Rust crates
	2.5. Application overview
	2.6. Useful language features
	2.7. Development experience
	2.8. Observations

	SUMMARY AND CONCLUSIONS
	References
	APPENDIX

