
 Copyright © 2020 Tismo Technology Solutions (P) Ltd 1/9

Machine Learning on Embedded Systems: An Exploratory Study on
Gas Chromatography Analysis

Presented at Pittcon 2020

Tismo Technology Solutions (P) Ltd

Bangalore, India

ABSTRACT

This paper proposes a novel approach of
utilizing Machine Learning (ML) models
for embedded systems. This is
demonstrated through the deployment
of an ML model on a Gas
Chromatography (GC) system, used for
natural gas analysis. Unlike other schools
of research that treat the analysis of
chromatograms as image classification
problems, this study treats
chromatograms as time-series inputs.
The trained model is ported to C
programming language and deployed on
an embedded system. Experimental
results demonstrate the superior
accuracy and robustness achieved by
this ML based approach, when compared
to the traditional analysis using heuristic
algorithms. The execution time of the ML
model on the embedded system is also
found to be on par with analysis using
heuristic algorithms.

INTRODUCTION

The popular perception of Machine
Learning (ML) is as a set of complex
algorithms that can only be applied on
systems with high processing
capabilities. On the contrary, ML has
remarkable potential to enhance the
capabilities of instruments. However, its
application on embedded systems is yet
to be fully explored.

Prevalent literature indicates that ML
models can increase the accuracy and
robustness of analyses, over a variety of

applications. In existing measurement
systems such as Mass Spectrometry [1] [2]

and Chromatography [3] [4] [5], ML models
can provide increased accuracy and
robustness against process variations. In
control systems, where prevailing
algorithms are not sufficiently accurate
to depict complex real-world systems,
ML models can be used to increase
robustness and to remove simplifying
assumptions[6] [7]. The automated
monitoring, detection and identification
of ECG signals can be done by a real-
time, accurate and robust analysis using
the ML approach [8] [9] [10] [11]. ML has shown
great promise in detecting potential
motor anomalies due to bearing faults,
through both current analysis and
vibrational analysis techniques [12] [13] [14] [15]

[16] [17]. While almost impossible to detect
visually by manual inspection or with
spectral analysis, researchers have been
able to detect bearing faults with close to
100% accuracy using ML models.
Researchers using an ML based
approach have recently achieved high
performance levels in terms of detection
and location of structural damage
directly from the raw vibration signals,
without the need for data pre-processing
[18] [19] [20] [21] [22].

In this study, ML is proposed as a viable
option for use in embedded systems.
This is illustrated using an ML model to
analyze the constituents of a natural gas
sample in a Gas Chromatography (GC)
system. In a GC system, variations in
several key parameters such as retention
time, temperature etc., complicates the

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 2/9

analysis model. Using ML on GC has
enhanced the accuracy of analysis and
has shown promise in enhancing the
reliability of the analysis process, by
making the study immune to variations in
flow rate, retention time, inlet pressure
and outlet pressure, viscosity and
velocity of the carrier gas, detector
temperature, oven temperature, sample
size etc. The execution time and memory
consumption of the ML model was found
to be viable for deployment on an
embedded system.

Most of the research in this field has
been directed at treating
chromatograms as image classification
problems, using 2D CNNs [3] [23] [24].
However, this study treats
chromatograms as time-series inputs.
This is a novel approach to peak
detection and evaluation, that optimizes
the accuracy of the analysis.

This paper explores the premise that ML
models can impart a level of intelligence
to embedded systems, that would
otherwise be difficult to implement,
using traditional approaches. This is
demonstrated through the deployment
of an ML model for analysis on a GC
system.

ML FOR EMBEDDED SYSTEMS

An ML model for an embedded system is
developed in two distinct phases - design
and deployment. The design phase
includes identifying parts of the system
that undertake complex data analysis,
collating the training data sets,
developing the suitable ML model,
training, validating and testing the model.

The deployment phase involves porting
the model to a low-level language like
C/C++ and optimizing the ML model for
the embedded system by eliminating
redundant computations. Calibration is
then applied to the output of the model.

Data for training is acquired during
product development and prototyping
and can be augmented to create training
data sets. Large amounts of data are
used to train the model in a high-
performance computational
environment. Training is the process of
automatically determining the optimum
variables and functions for error
minimization. This is done by evaluating
the loss function of the model. The
functions and variables that form the
model are iteratively updated through an
optimization algorithm. Validation is the
process of frequently evaluating the
trained model, to fine tune its
hyperparameters. This is done in tandem
with training. Once the loss function
converges to an acceptable level of error,
the model is said to be trained. Testing is
the process of evaluating the
performance of the trained model
against a previously unseen set of data.

Once an ML model has been created, it
can be deployed to an embedded
system. The model is ported to a low-
level language like C/ C++. The functions
and variables that form the model are
optimized by reducing memory
allocations and redundant computations.
This would serve as the analysis logic of
the system. After the ML model is
deployed, factory and user calibration
must be performed to account for the
instrument specific variations.

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 3/9

Figure 1: Design and Deployment of ML on Embedded Systems

METHODOLOGY

For the purpose of this study, an ML
model was deployed on a GC system
used to analyze the thermal
characteristics of Natural Gas. A
Multivariate Regression model was
employed. This is a regression model that
generates multiple outputs and is trained
by a supervised learning algorithm.
Chromatograms with known results
were used to create, train and validate
the ML model on a PC. This model was
then ported to C and its performance
was evaluated on the embedded system.

GC is one of the most popular separation
techniques, used for the analysis of
samples that vaporize without
decomposition. The gaseous samples
under analysis adsorb on a column at
different rates. This causes each
constituent to elute at different times.
This is known as the retention time of the
constituent. The GC system used in this
study features a 32-bit microcontroller
responsible for process management,
oven temperature control and data
acquisition. It also provides supervisory
control, carries out data analysis and is
responsible for the HMI. Thermal

Conductivity Detector (TCD) was used to
provide extremely high sensitivity. A 24-
bit ADC is used for the TCD
measurements.

Technology

For the purpose of this study, Python 3.0,
Keras, an open-source neural-network
API written in Python and TensorFlow
2.0 libraries were utilized. Here, it is
important to highlight that the ML model
was trained on a high-performance
system. Once the model was finalized, it
was optimized and ported to C
programming language, to be deployed
on the GC system.

Machine Learning Model

The ML model in this study uses One
Dimensional Convolutional Neural
Network (1D CNN) layers. This is a type of
deep neural network that performs a
single dimensional array operation called
convolution, while mapping its input to
the output.

A GC system acquires data points
indexed in time, called chromatograms.
The chromatogram is analyzed to

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 4/9

identify and quantify constituents in
samples. For such time-series
applications, 1D CNNs show a lot of
promise. 1D CNNs require only linear
array operations. This implies lower
memory requirements and lower
computational complexity, as compared
to 2D CNNs. This makes them suitable
for real-time, low-cost hardware
implementations like embedded
systems.

The ML model used in this study is
composed of one Dynamic Compression
layer, one Average Pooling layer, four
Convolutional layers and three Dense
layers, in that order. Each node in a layer
is connected to some or all the nodes of
the previous layers.

The Dynamic Compression layer was
introduced to scale the magnitude of the
data points to a range between -1 and +1.
Both the chromatogram data and the
corresponding results were compressed.
This led to faster convergence of error,
during training. An Average Pooling layer

is a moving average filter, introduced to
reduce white noise in the data obtained
from the detector. The Convolutional
layers performed a specialized type of
linear operation. An array of weights,
called the kernel, is applied on all
elements of the input array, in batches
called strides. A product sum between
the kernel and a group of input elements
is computed for each output position.
Each filter in the Convolutional layer can
be thought of as identifying a particular
pattern or feature. The outputs are then
passed through a nonlinear activation
function, which in this study, is the
Rectified Linear Unit (ReLU). The Dense
Layers perform weighted summation
operations on the outputs of the
previous layers. The outputs of the dense
layers (except the outputs of the final
layer) are then passed through the ReLU
activation function. The results need to
be decompressed and calibration
applied. The percentage values of the
constituent gases are then calculated.

Figure 2: Machine Learning Model used in this Study

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 5/9

Data Preparation

A set of 50 chromatograms was initially
available for this study. Data
augmentation was carried out through
various techniques to simulate process
variations such as linear time shifting (± 1
min), time scaling (± 1 min), removal of the
constituent gases and combinations of
each of these options. This generated a
total of about 70,000 chromatograms,
with their corresponding results. These
were divided randomly into the training
set (about 56,000 chromatograms),
validation set (about 7,000
chromatograms) and the test set (about
7,000 chromatograms).

A training set is a large set of
chromatograms, used to train the ML
model. A validation set is a set of
chromatograms, used to fine-tune the
hyperparameters (such as number of
layers, configuration of each layer with
parameters like kernel size, stride etc.). A
test set is an independent set of
chromatograms that is used only to
evaluate the performance of the final
model.

Training the Model

Training is the process of minimizing the
loss function by automatically
determining optimum values for all
learnable parameters (weights and
biases). A loss function measures the
deviation between output predictions of

the network and known results. In this
study, the Mean Squared Error (MSE) loss
function was used. MSE computes the
average squared difference between the
estimated values and the actual values.
Loss values are calculated during
forward propagation and learnable
parameters are updated during
backpropagation.

Adaptive Moment Estimation (Adam) [25]
methodology was the optimization
algorithm used during backpropagation.
Adam is a variation of Stochastic
Gradient Descent (SGD). Adam
estimates the first and second moments
of the gradient to adjust the learning rate
for each weight of the neural network.

Validation and Testing

Training of the ML model was stopped
when the MSE on the validation set
converged. Convergence was observed
at epoch count (number of training
iterations) of 50. The trained model was
then tested with a test set of 7,000
chromatograms and an average MSE of
0.09 was observed.

The superior performance of the ML
algorithm is evident across each of the
sample constituents. The table below
captures the detected percentage of
each constituent, for an arbitrary
chromatogram using the ML model.
Mean Squared Error and Root Mean
Squared Error were calculated.

Table 1: Analysis results of a Single Chromatogram using ML Algorithm

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 6/9

Deployment on Embedded System

The trained ML model was ported to C
programming language. A Python script
was used to extract the final values of
weights and biases of each layer and to
generate C files. The operations of the
ML model were then replicated through a
C program that utilized the final values of
weights and biases. This resulted in an
ML model that eliminated unnecessary
memory allocations and computations
and was optimized to run on an
embedded system. No external libraries

or frameworks were used to run the
model. Calibration was applied to the
output of the model. The system was
tested using multiple samples and
results were validated against the known
values of reference samples.

This study found that the ML model
consumed about 8 MB of memory. The
table below illustrates the performance
parameters of the ML model on a PC and
various embedded systems, examined
over the course of this study.

Table 2: Performance Parameters of the ML model

RESULTS

An ML model that accurately analyzed
the constituents of a natural gas sample
through GC, was realized. The model was
deployed on the embedded system.
Accuracy of the GC analysis was
dramatically improved using the ML
model, when compared to the traditional

analysis. The Absolute Errors recorded
by the ML algorithm and the traditional
algorithm for 64 arbitrary
chromatograms, are captured in the
scatter plot below. Error was calculated
by comparing the values of
concentration of constituents detected
by the algorithms to the known
calibrated values.

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 7/9

Figure 3: Scatterplot comparing the accuracy of GC analysis using ML Algorithm and Traditional Algorithm

DISCUSSION

This exploratory study indicates that ML
is effective in embedded system
applications, where a multitude of
variables and experimental conditions
make it difficult to arrive at an all-
encompassing analysis model. ML is
found to be a viable option to increase
accuracy and robustness of data analysis
in embedded systems.

The traditional approach to GC analysis
involves noise filtering, baseline
correction, peak detection, peak
selection, peak identification, peak area
computation and quantification. Each of
these steps introduces errors that
cascade and lead to a system that is
susceptible to process variations. On the
contrary, the novel ML approach used in
this study identified and quantified gas
constituents with increased accuracy
and was robust against process
variations. Moreover, porting the ML
model to C resulted in the creation of a
model optimized to run on an embedded
system.

For training, this approach would need a
high-performance system and design
time effort comparable to any typical
software development for similar
applications. Once a model is finalized, it
can be ported to embedded systems.
Alternatively, this can be automated
through platforms like TensorFlow Lite.
However, manual porting is the
recommended approach, as it would
eliminate dispensable memory
initializations and redundant
computations.

This study establishes the viability of
deploying ML models to embedded
systems, paving the way for intelligent
analysis. This study also indicates that
ML models developed using 1D CNNs are
ideal for analyzing time-series data. The
findings of this study indicate that using
ML to treat chromatograms as time-
series inputs instead of images, could be
the next step in enhancing the accuracy
and robustness of GC analysis.

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 8/9

Future work in this area can be to further optimize the model by reducing its complexity
without compromising on accuracy. Furthermore, it may be possible to redesign the GC
system for a faster flow rate, faster GC start-up and a compressed chromatogram,
assuming that the ML model will be able to achieve similar accuracy. In the future, this
work can also be extended to Liquid Chromatography (LC) and Gas Chromatography-
Mass Spectrometry (GC-MS) applications.

REFERENCES

1. Georgios A Theodoridis, Helen G Gika, Elizabeth J Want, and Ian D Wilson. Liquid
chromatography-mass spectrometry based global metabolite profiling (2012).

2. C A Smith, E J Want, G O’Maille, R Abagyan, and G Siuzdak. XCMS: processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment,
matching, and identification (2006).

3. Ralf Tautenhahn, Christoph B¨ottcher, and Steffen Neumann. Highly sensitive

feature detection for high resolution LC/MS (2008).

4. A. Smolinska, A. C. Hauschild, R. R. Fijten, J. W. Dallinga, J. Baum-bach, and F. J. van
Schooten, Current breathomics-a review on data pre-processing techniques and
machine learning in metabolomics breath analysis (2014).

5. Hong Yang, Zbigniew Ring, Yevgenia Briker, Norma McLean, Wally Friesen, Craig
W. Fairbridge, Neural network prediction of cetane number and density of diesel
fuel from its chemical composition determined by LC and GC–MS (2002).

6. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic
algorithms for redundant robotic systems (2009).

7. Duriez, T., Brunton, S.L., Noack, B.R.: Machine learning control (MLC). – Taming
Nonlinear Dynamics and Turbulence (2017).

8. S. Kiranyaz, T. Ince, M. Gabbouj, Personalized Monitoring and Advance Warning
System for Cardiac Arrhythmias (2017).

9. S. Kiranyaz, T. Ince, R. Hamila, M. Gabbouj, Convolutional Neural Networks for

patient-specific ECG classification (2015).

10. S. Kiranyaz, T. Ince, M. Gabbouj, Real-Time Patient-Specific ECG Classification by
1-D Convolutional Neural Networks (2016).

11. S. Kiranyaz, T. Ince, M. Gabbouj, Personalized Monitoring and Advance Warning

System for Cardiac Arrhythmias (2017).

12. T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-Time Motor Fault Detection
by 1-D Convolutional Neural Networks (2016).

13. S. Kiranyaz, A. Gastli, L. Ben-Brahim, N. Alemadi, M. Gabbouj, Real-Time Fault
Detection and Identification for MMC using 1D Convolutional Neural Networks
(2018).

 Copyright © 2020 Tismo Technology Solutions (P) Ltd 9/9

14. O. Abdeljaber, S. Sassi, O. Avci, S. Kiranyaz, A.A. Ibrahim, M. Gabbouj, Fault
Detection and Severity Identification of Ball Bearings by Online Condition
Monitoring (2018).

15. L. Eren, T. Ince, S. Kiranyaz, A Generic Intelligent Bearing Fault Diagnosis System

Using Compact Adaptive 1D CNN Classifier (2019).

16. L. Eren, Bearing fault detection by one-dimensional convolutional neural networks
(2017).

17. W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional neural network

with new training methods for bearing fault diagnosis under noisy environment
and different working load (2018).

18. O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, D.J. Inman, Wireless and real-time
structural damage detection: A novel decentralized method for wireless sensor
networks (2018).

19. O. Avci, O. Abdeljaber, S. Kiranyaz, D. Inman, Structural Damage Detection in Real

Time: Implementation of 1D Convolutional Neural Networks for SHM Applications
(2017).

20. O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D.J. Inman, Real-time vibration-

based structural damage detection using one-dimensional convolutional neural
networks (2017).

21. O. Avci, O. Abdeljaber, S. Kiranyaz, B. Boashash, H. Sodano, D.J. Inman, Efficiency

Validation of One Dimensional Convolutional Neural Networks for Structural
Damage Detection Using a SHM Benchmark Data (2018).

22. O. Abdeljaber, O. Avci, M.S. Kiranyaz, B. Boashash, H. Sodano, D.J. Inman, 1-D CNNs

for structural damage detection: Verification on a structural health monitoring
benchmark data, Neurocomputing (2017).

23. K. H. Liland, T. Almoy, and B. H. Mevik, Optimal choice of baseline correction for

multivariate calibration of spectra (2010).

24. D. Cirean, U. Meier, and J. Schmidhuber, Multi-column Deep Neural Networks for
Image Classification, (2012).

25. Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization (2015).

