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ABSTRACT 

This paper proposes a novel approach of 
utilizing Machine Learning (ML) models 
for embedded systems. This is 
demonstrated through the deployment 
of an ML model on a Gas 
Chromatography (GC) system, used for 
natural gas analysis. Unlike other schools 
of research that treat the analysis of 
chromatograms as image classification 
problems, this study treats 
chromatograms as time-series inputs. 
The trained model is ported to C 
programming language and deployed on 
an embedded system. Experimental 
results demonstrate the superior 
accuracy and robustness achieved by 
this ML based approach, when compared 
to the traditional analysis using heuristic 
algorithms. The execution time of the ML 
model on the embedded system is also 
found to be on par with analysis using 
heuristic algorithms. 

INTRODUCTION  

The popular perception of Machine 
Learning (ML) is as a set of complex 
algorithms that can only be applied on 
systems with high processing 
capabilities. On the contrary, ML has 
remarkable potential to enhance the 
capabilities of instruments. However, its 
application on embedded systems is yet 
to be fully explored. 
 
Prevalent literature indicates that ML 
models can increase the accuracy and 
robustness of analyses, over a variety of  

 
applications. In existing measurement 
systems such as Mass Spectrometry [1] [2] 

and Chromatography [3] [4] [5], ML models 
can provide increased accuracy and 
robustness against process variations. In 
control systems, where prevailing 
algorithms are not sufficiently accurate 
to depict complex real-world systems, 
ML models can be used to increase 
robustness and to remove simplifying 
assumptions[6] [7]. The automated 
monitoring, detection and identification 
of ECG signals can be done by a real-
time, accurate and robust analysis using 
the ML approach [8] [9] [10] [11]. ML has shown 
great promise in detecting potential 
motor anomalies due to bearing faults, 
through both current analysis and 
vibrational analysis techniques [12] [13] [14] [15] 

[16] [17]. While almost impossible to detect 
visually by manual inspection or with 
spectral analysis, researchers have been 
able to detect bearing faults with close to 
100% accuracy using ML models. 
Researchers using an ML based 
approach have recently achieved high 
performance levels in terms of detection 
and location of structural damage 
directly from the raw vibration signals, 
without the need for data pre-processing 
[18] [19] [20] [21] [22].  
 
In this study, ML is proposed as a viable 
option for use in embedded systems. 
This is illustrated using an ML model to 
analyze the constituents of a natural gas 
sample in a Gas Chromatography (GC) 
system. In a GC system, variations in 
several key parameters such as retention 
time, temperature etc., complicates the 
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analysis model. Using ML on GC has 
enhanced the accuracy of analysis and 
has shown promise in enhancing the 
reliability of the analysis process, by 
making the study immune to variations in 
flow rate, retention time, inlet pressure 
and outlet pressure, viscosity and 
velocity of the carrier gas, detector 
temperature, oven temperature, sample 
size etc. The execution time and memory 
consumption of the ML model was found 
to be viable for deployment on an 
embedded system. 
 
Most of the research in this field has 
been directed at treating 
chromatograms as image classification 
problems, using 2D CNNs [3] [23] [24]. 
However, this study treats 
chromatograms as time-series inputs. 
This is a novel approach to peak 
detection and evaluation, that optimizes 
the accuracy of the analysis.  
 
This paper explores the premise that ML 
models can impart a level of intelligence 
to embedded systems, that would 
otherwise be difficult to implement, 
using traditional approaches. This is 
demonstrated through the deployment 
of an ML model for analysis on a GC 
system. 

ML FOR EMBEDDED SYSTEMS 

An ML model for an embedded system is 
developed in two distinct phases - design 
and deployment. The design phase 
includes identifying parts of the system 
that undertake complex data analysis, 
collating the training data sets, 
developing the suitable ML model, 
training, validating and testing the model. 

The deployment phase involves porting 
the model to a low-level language like 
C/C++ and optimizing the ML model for 
the embedded system by eliminating 
redundant computations. Calibration is 
then applied to the output of the model. 
 
Data for training is acquired during 
product development and prototyping 
and can be augmented to create training 
data sets. Large amounts of data are 
used to train the model in a high-
performance computational 
environment. Training is the process of 
automatically determining the optimum 
variables and functions for error 
minimization. This is done by evaluating 
the loss function of the model. The 
functions and variables that form the 
model are iteratively updated through an 
optimization algorithm. Validation is the 
process of frequently evaluating the 
trained model, to fine tune its 
hyperparameters. This is done in tandem 
with training. Once the loss function 
converges to an acceptable level of error, 
the model is said to be trained. Testing is 
the process of evaluating the 
performance of the trained model 
against a previously unseen set of data.   
 
Once an ML model has been created, it 
can be deployed to an embedded 
system. The model is ported to a low-
level language like C/ C++. The functions 
and variables that form the model are 
optimized by reducing memory 
allocations and redundant computations. 
This would serve as the analysis logic of 
the system. After the ML model is 
deployed, factory and user calibration 
must be performed to account for the 
instrument specific variations. 
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Figure 1: Design and Deployment of ML on Embedded Systems 

 

METHODOLOGY 

For the purpose of this study, an ML 
model was deployed on a GC system 
used to analyze the thermal 
characteristics of Natural Gas. A 
Multivariate Regression model was 
employed. This is a regression model that 
generates multiple outputs and is trained 
by a supervised learning algorithm. 
Chromatograms with known results 
were used to create, train and validate 
the ML model on a PC. This model was 
then ported to C and its performance 
was evaluated on the embedded system. 
 
GC is one of the most popular separation 
techniques, used for the analysis of 
samples that vaporize without 
decomposition. The gaseous samples 
under analysis adsorb on a column at 
different rates. This causes each 
constituent to elute at different times. 
This is known as the retention time of the 
constituent. The GC system used in this 
study features a 32-bit microcontroller 
responsible for process management, 
oven temperature control and data 
acquisition. It also provides supervisory 
control, carries out data analysis and is 
responsible for the HMI. Thermal  

 
Conductivity Detector (TCD) was used to 
provide extremely high sensitivity. A 24-
bit ADC is used for the TCD 
measurements.  

Technology 
 
For the purpose of this study, Python 3.0, 
Keras, an open-source neural-network 
API written in Python and TensorFlow 
2.0 libraries were utilized. Here, it is 
important to highlight that the ML model 
was trained on a high-performance 
system. Once the model was finalized, it 
was optimized and ported to C 
programming language, to be deployed 
on the GC system.  
 
Machine Learning Model 
 
The ML model in this study uses One 
Dimensional Convolutional Neural 
Network (1D CNN) layers. This is a type of 
deep neural network that performs a 
single dimensional array operation called 
convolution, while mapping its input to 
the output.  
 
A GC system acquires data points 
indexed in time, called chromatograms. 
The chromatogram is analyzed to 
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identify and quantify constituents in 
samples.  For such time-series 
applications, 1D CNNs show a lot of 
promise. 1D CNNs require only linear 
array operations. This implies lower 
memory requirements and lower 
computational complexity, as compared 
to 2D CNNs. This makes them suitable 
for real-time, low-cost hardware 
implementations like embedded 
systems. 
 
The ML model used in this study is 
composed of one Dynamic Compression 
layer, one Average Pooling layer, four 
Convolutional layers and three Dense 
layers, in that order. Each node in a layer 
is connected to some or all the nodes of 
the previous layers.  
 
The Dynamic Compression layer was 
introduced to scale the magnitude of the 
data points to a range between -1 and +1. 
Both the chromatogram data and the 
corresponding results were compressed. 
This led to faster convergence of error, 
during training. An Average Pooling layer 

is a moving average filter, introduced to 
reduce white noise in the data obtained 
from the detector. The Convolutional 
layers performed a specialized type of 
linear operation. An array of weights, 
called the kernel, is applied on all 
elements of the input array, in batches 
called strides. A product sum between 
the kernel and a group of input elements 
is computed for each output position. 
Each filter in the Convolutional layer can 
be thought of as identifying a particular 
pattern or feature. The outputs are then 
passed through a nonlinear activation 
function, which in this study, is the 
Rectified Linear Unit (ReLU). The Dense 
Layers perform weighted summation 
operations on the outputs of the 
previous layers. The outputs of the dense 
layers (except the outputs of the final 
layer) are then passed through the ReLU 
activation function. The results need to 
be decompressed and calibration 
applied. The percentage values of the 
constituent gases are then calculated.

 
Figure 2: Machine Learning Model used in this Study 
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Data Preparation 
 
A set of 50 chromatograms was initially 
available for this study. Data 
augmentation was carried out through 
various techniques to simulate process 
variations such as linear time shifting (± 1 
min), time scaling (± 1 min), removal of the 
constituent gases and combinations of 
each of these options. This generated a 
total of about 70,000 chromatograms, 
with their corresponding results. These 
were divided randomly into the training 
set (about 56,000 chromatograms), 
validation set (about 7,000 
chromatograms) and the test set (about 
7,000 chromatograms).  
 
A training set is a large set of 
chromatograms, used to train the ML 
model. A validation set is a set of 
chromatograms, used to fine-tune the 
hyperparameters (such as number of 
layers, configuration of each layer with 
parameters like kernel size, stride etc.). A 
test set is an independent set of 
chromatograms that is used only to 
evaluate the performance of the final 
model. 
 
Training the Model 
 
Training is the process of minimizing the 
loss function by automatically 
determining optimum values for all  
learnable parameters (weights and 
biases). A loss function measures the 
deviation between output predictions of 

the network and known results. In this 
study, the Mean Squared Error (MSE) loss 
function was used.  MSE computes the 
average squared difference between the 
estimated values and the actual values. 
Loss values are calculated during 
forward propagation and learnable 
parameters are updated during 
backpropagation.  
 
Adaptive Moment Estimation (Adam) [25] 
methodology was the optimization 
algorithm used during backpropagation. 
Adam is a variation of Stochastic 
Gradient Descent (SGD). Adam 
estimates the first and second moments 
of the gradient to adjust the learning rate 
for each weight of the neural network.  

Validation and Testing 
 
Training of the ML model was stopped 
when the MSE on the validation set 
converged. Convergence was observed 
at epoch count (number of training 
iterations) of 50. The trained model was 
then tested with a test set of 7,000 
chromatograms and an average MSE of 
0.09 was observed.  
 
The superior performance of the ML 
algorithm is evident across each of the 
sample constituents. The table below 
captures the detected percentage of 
each constituent, for an arbitrary 
chromatogram using the ML model. 
Mean Squared Error and Root Mean 
Squared Error were calculated. 

Table 1: Analysis results of a Single Chromatogram using ML Algorithm 
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Deployment on Embedded System 
 
The trained ML model was ported to C 
programming language. A Python script 
was used to extract the final values of 
weights and biases of each layer and to 
generate C files. The operations of the 
ML model were then replicated through a 
C program that utilized the final values of 
weights and biases. This resulted in an 
ML model that eliminated unnecessary 
memory allocations and computations 
and was optimized to run on an 
embedded system. No external libraries 

or frameworks were used to run the 
model. Calibration was applied to the 
output of the model. The system was 
tested using multiple samples and 
results were validated against the known 
values of reference samples.  
 
This study found that the ML model 
consumed about 8 MB of memory. The 
table below illustrates the performance 
parameters of the ML model on a PC and 
various embedded systems, examined 
over the course of this study.  

Table 2: Performance Parameters of the ML model 
 

RESULTS 

An ML model that accurately analyzed 
the constituents of a natural gas sample 
through GC, was realized. The model was 
deployed on the embedded system. 
Accuracy of the GC analysis was 
dramatically improved using the ML 
model, when compared to the traditional  

analysis. The Absolute Errors recorded 
by the ML algorithm and the traditional 
algorithm for 64 arbitrary 
chromatograms, are captured in the 
scatter plot below. Error was calculated 
by comparing the values of 
concentration of constituents detected 
by the algorithms to the known 
calibrated values.
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Figure 3: Scatterplot comparing the accuracy of GC analysis using ML Algorithm and Traditional Algorithm 

DISCUSSION 

This exploratory study indicates that ML 
is effective in embedded system 
applications, where a multitude of 
variables and experimental conditions 
make it difficult to arrive at an all-
encompassing analysis model. ML is 
found to be a viable option to increase 
accuracy and robustness of data analysis 
in embedded systems.  
 
The traditional approach to GC analysis 
involves noise filtering, baseline 
correction, peak detection, peak 
selection, peak identification, peak area 
computation and quantification. Each of 
these steps introduces errors that 
cascade and lead to a system that is 
susceptible to process variations. On the 
contrary, the novel ML approach used in 
this study identified and quantified gas 
constituents with increased accuracy 
and was robust against process 
variations. Moreover, porting the ML 
model to C resulted in the creation of a 
model optimized to run on an embedded 
system.  
 

 
For training, this approach would need a 
high-performance system and design 
time effort comparable to any typical 
software development for similar 
applications. Once a model is finalized, it 
can be ported to embedded systems. 
Alternatively, this can be automated 
through platforms like TensorFlow Lite. 
However, manual porting is the 
recommended approach, as it would 
eliminate dispensable memory 
initializations and redundant 
computations.  
 
This study establishes the viability of 
deploying ML models to embedded 
systems, paving the way for intelligent 
analysis. This study also indicates that 
ML models developed using 1D CNNs are 
ideal for analyzing time-series data. The 
findings of this study indicate that using 
ML to treat chromatograms as time-
series inputs instead of images, could be 
the next step in enhancing the accuracy 
and robustness of GC analysis.  
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Future work in this area can be to further optimize the model by reducing its complexity 
without compromising on accuracy. Furthermore, it may be possible to redesign the GC 
system for a faster flow rate, faster GC start-up and a compressed chromatogram, 
assuming that the ML model will be able to achieve similar accuracy. In the future, this 
work can also be extended to Liquid Chromatography (LC) and Gas Chromatography-
Mass Spectrometry (GC-MS) applications. 
  

REFERENCES 

1. Georgios A Theodoridis, Helen G Gika, Elizabeth J Want, and Ian D Wilson. Liquid 
chromatography-mass spectrometry based global metabolite profiling (2012). 
 

2. C A Smith, E J Want, G O’Maille, R Abagyan, and G Siuzdak. XCMS: processing mass 
spectrometry data for metabolite profiling using nonlinear peak alignment, 
matching, and identification (2006). 

 
3. Ralf Tautenhahn, Christoph B¨ottcher, and Steffen Neumann. Highly sensitive 

feature detection for high resolution LC/MS (2008). 
 

4. A. Smolinska, A. C. Hauschild, R. R. Fijten, J. W. Dallinga, J. Baum-bach, and F. J. van 
Schooten, Current breathomics-a review on data pre-processing techniques and 
machine learning in metabolomics breath analysis (2014). 
 

5. Hong Yang, Zbigniew Ring, Yevgenia Briker, Norma McLean, Wally Friesen, Craig 
W. Fairbridge, Neural network prediction of cetane number and density of diesel 
fuel from its chemical composition determined by LC and GC–MS (2002). 
 

6. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic 
algorithms for redundant robotic systems (2009). 
 

7. Duriez, T., Brunton, S.L., Noack, B.R.: Machine learning control (MLC). – Taming 
Nonlinear Dynamics and Turbulence (2017). 
 

8. S. Kiranyaz, T. Ince, M. Gabbouj, Personalized Monitoring and Advance Warning 
System for Cardiac Arrhythmias (2017). 

 
9. S. Kiranyaz, T. Ince, R. Hamila, M. Gabbouj, Convolutional Neural Networks for 

patient-specific ECG classification (2015). 
 

10. S. Kiranyaz, T. Ince, M. Gabbouj, Real-Time Patient-Specific ECG Classification by 
1-D Convolutional Neural Networks (2016). 

 
11. S. Kiranyaz, T. Ince, M. Gabbouj, Personalized Monitoring and Advance Warning 

System for Cardiac Arrhythmias (2017). 
 

12. T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-Time Motor Fault Detection 
by 1-D Convolutional Neural Networks (2016). 
 

13. S. Kiranyaz, A. Gastli, L. Ben-Brahim, N. Alemadi, M. Gabbouj, Real-Time Fault 
Detection and Identification for MMC using 1D Convolutional Neural Networks 
(2018). 

 



 

            Copyright © 2020 Tismo Technology Solutions (P) Ltd                                                                           9/9 

 
 

14. O. Abdeljaber, S. Sassi, O. Avci, S. Kiranyaz, A.A. Ibrahim, M. Gabbouj, Fault 
Detection and Severity Identification of Ball Bearings by Online Condition 
Monitoring (2018). 

 
15. L. Eren, T. Ince, S. Kiranyaz, A Generic Intelligent Bearing Fault Diagnosis System 

Using Compact Adaptive 1D CNN Classifier (2019). 
 

16. L. Eren, Bearing fault detection by one-dimensional convolutional neural networks 
(2017). 

 
17. W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional neural network 

with new training methods for bearing fault diagnosis under noisy environment 
and different working load (2018). 
 

18. O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, D.J. Inman, Wireless and real-time 
structural damage detection: A novel decentralized method for wireless sensor 
networks (2018). 

 
19. O. Avci, O. Abdeljaber, S. Kiranyaz, D. Inman, Structural Damage Detection in Real 

Time: Implementation of 1D Convolutional Neural Networks for SHM Applications 
(2017). 

 
20. O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D.J. Inman, Real-time vibration-

based structural damage detection using one-dimensional convolutional neural 
networks (2017). 

 
21. O. Avci, O. Abdeljaber, S. Kiranyaz, B. Boashash, H. Sodano, D.J. Inman, Efficiency 

Validation of One Dimensional Convolutional Neural Networks for Structural 
Damage Detection Using a SHM Benchmark Data (2018). 

 
22. O. Abdeljaber, O. Avci, M.S. Kiranyaz, B. Boashash, H. Sodano, D.J. Inman, 1-D CNNs 

for structural damage detection: Verification on a structural health monitoring 
benchmark data, Neurocomputing (2017). 

 
23. K. H. Liland, T. Almoy, and B. H. Mevik, Optimal choice of baseline correction for 

multivariate calibration of spectra (2010). 
 

24. D. Cirean, U. Meier, and J. Schmidhuber, Multi-column Deep Neural Networks for 
Image Classification, (2012). 
 

25. Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization (2015). 
 


